Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
Biologicals ; 75: 12-15, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1616379

ABSTRACT

BACKGROUND: The successful development of messenger RNA vaccines for SARS-CoV-2 opened up venues for clinical nucleotide-based vaccinations. For development of DNA vaccines, we tested whether the EGF domain peptide of Developmentally regulated endothelial locus1 (E3 peptide) enhances uptake of extracellularly applied plasmid DNA. METHODS: DNA plasmid encoding lacZ or GFP was applied with a conditioned culture medium containing E3 peptide to cell lines in vitro or mouse soleus muscles in vivo, respectively. After 48 h incubation, gene expression was examined by ß-galactosidase (ß-gal) assay and fluorescent microscope, respectively. RESULTS: Application of E3 peptide-containing medium to cultured cell lines induced intense ß-gal activity in a dose-dependent manner. Intra-gastrocnemius injection of E3 peptide-containing medium to mouse soleus muscle succeeded in the induction of GFP fluorescence in many cells around the injection site. CONCLUSIONS: The administration of E3 peptide facilitates transmembrane uptake of extracellular DNA plasmid which induces sufficient extrinsic gene expression.


Subject(s)
DNA/genetics , Epidermal Growth Factor/chemistry , Gene Expression , Peptides , Plasmids/genetics , Plasmids/metabolism , Protein Domains , Animals , COVID-19 Vaccines , Cell Membrane/metabolism , DNA/metabolism , Genes, Reporter , Green Fluorescent Proteins/genetics , Mice , Muscle, Skeletal , Vaccines, DNA/genetics , Vaccines, DNA/metabolism
3.
Expert Rev Vaccines ; 20(1): 23-44, 2021 01.
Article in English | MEDLINE | ID: covidwho-1026886

ABSTRACT

INTRODUCTION: The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has currently caused the pandemic with a high progressive speed and has been considered as the global public health crisis in 2020. This new member of the coronavirus family has created a potentially fatal disease, called coronavirus disease-2019 (COVID-19). Despite the continuous efforts of researchers to find effective vaccines and drugs for COVID-19, there is still no success in this matter. AREAS COVERED: Here, the literature regarding the COVID-19 vaccine candidates currently in the clinical trials, as well as main candidates in pre-clinical stages for development and research, were reviewed. These candidates have been developed under five different major platforms, including live-attenuated vaccine, mRNA-based vaccine, DNA vaccines, inactivated virus, and viral-vector-based vaccine. EXPERT OPINION: There are several limitations in the field of the rapid vaccine development against SARS-CoV-2, and other members of the coronavirus family such as SARS-CoV and MERS-CoV. The key challenges of designing an effective vaccine within a short time include finding the virulence ability of an emerging virus and potential antigen, choosing suitable experimental models and efficient route of administration, the immune-response study, designing the clinical trials, and determining the safety, as well as efficacy.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , COVID-19 Vaccines/metabolism , Clinical Trials as Topic/methods , Humans , SARS-CoV-2/metabolism , Vaccines, DNA/administration & dosage , Vaccines, DNA/metabolism
4.
Angew Chem Int Ed Engl ; 59(43): 18885-18897, 2020 10 19.
Article in English | MEDLINE | ID: covidwho-642379

ABSTRACT

The current COVID-19 pandemic has a tremendous impact on daily life world-wide. Despite the ability to dampen the spread of SARS-CoV-2, the causative agent of the diseases, through restrictive interventions, it is believed that only effective vaccines will provide sufficient control over the disease and revert societal live back to normal. At present, a double-digit number of efforts are devoted to the development of a vaccine against COVID-19. Here, we provide an overview of these (pre)clinical efforts and provide background information on the technologies behind these vaccines. In addition, we discuss potential hurdles that need to be addressed prior to mass scale clinical translation of successful vaccine candidates.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/metabolism , Genetic Vectors/genetics , Genetic Vectors/immunology , Humans , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Vaccines, DNA/immunology , Vaccines, DNA/metabolism , Vaccines, Inactivated/immunology , Vaccines, Inactivated/metabolism , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL